Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo.
نویسندگان
چکیده
Prevascularization of engineered bony constructs can potentially improve in vivo viability. However, the effect of endothelial cells on osteogenesis is unknown when placed in poly(D,L-lactide) (PLA) scaffolds alone. Adipose-derived stem cells (ASCs) have the ability to differentiate into both osteoblasts and endothelial cells by culture in specific media. We hypothesized that ASC-derived endothelial cells would improve vascularity with minimal contribution to bone formation when placed in scaffold alone. ASCs were successfully differentiated into endothelial cells (ASC-Endo) and osteoblasts (ASC-Osteo) using media supplemented with vascular endothelial growth factor and bone morphogenic protein 2, respectively. Tissue-engineered constructs were created with PLA matrices containing no cells (control), undifferentiated ASCs (ASCs), osteogenic-differentiated ASCs (ASC-Osteo), or endothelial differentiated ASCs (ASC-Endo), and these constructs were evaluated in critical-size Lewis rat calvarial defect model (n = 34). Eight weeks after implantation, the bone volume and microvessel population of bony constructs were evaluated by micro-computed tomography analysis and histologic staining. Bone volumes for ASCs and ASC-Osteo constructs, 0.7 and 0.91 mm(3), respectively, were statistically greater than that for ASC-Endo, 0.28 mm(3) (P < 0.05). There was no statistical difference between the PLA control (0.5 mm(3)) and ASC-Endo (0.28 mm(3)) constructs in bone formation. The percent area of microvessels within constructs was highest in the ASC-Endo group, although it did not reach statistical significance (0.065). Prevascularization of PLA scaffold with ASC-Endo cells will not increase bone formation by itself but may be used as a cell source for improving vascularization and potentially improving existing osteoblast function.
منابع مشابه
Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملEvaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model
Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملInvestigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of craniofacial surgery
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2012